20 research outputs found

    A Method to Determine the Presence of Averaged Event-Related Fields Using Randomization Tests

    Get PDF
    We present a simple and effective method to test whether an event consistently activates a set of brain electric sources across repeated measurements of event-related scalp field data. These repeated measurements can be single trials, single subject ERPs, or ERPs from different studies. The method considers all sensors simultaneously, but can be applied separately to each time frame or frequency band of the data. This allows limiting the analysis to time periods and frequency bands where there is positive evidence of a consistent relation between the event and some brain electric sources. The test may therefore avoid false conclusions about the data resulting from an inadequate selection of the analysis window and bandpass filter, and permit the exploration of alternate hypotheses when group/condition differences are observed in evoked field data. The test will be called topographic consistency test (TCT). The statistical inference is based on simple randomization techniques. Apart form the methodological introduction, the paper contains a series of simulations testing the statistical power of the method as function of number of sensors and observations, a sample analysis of EEG potentials related to self-initiated finger movements, and Matlab source code to facilitate the implementation. Furthermore a series of measures to control for multiple testing are introduced and applied to the sample dat

    Ragu: A Free Tool for the Analysis of EEG and MEG Event-Related Scalp Field Data Using Global Randomization Statistics

    Get PDF
    We present a program (Ragu; Randomization Graphical User interface) for statistical analyses of multichannel event-related EEG and MEG experiments. Based on measures of scalp field differences including all sensors, and using powerful, assumption-free randomization statistics, the program yields robust, physiologically meaningful conclusions based on the entire, untransformed, and unbiased set of measurements. Ragu accommodates up to two within-subject factors and one between-subject factor with multiple levels each. Significance is computed as function of time and can be controlled for type II errors with overall analyses. Results are displayed in an intuitive visual interface that allows further exploration of the findings. A sample analysis of an ERP experiment illustrates the different possibilities offered by Ragu. The aim of Ragu is to maximize statistical power while minimizing the need for a-priori choices of models and parameters (like inverse models or sensors of interest) that interact with and bias statistics

    Studying the topological organization of the cerebral blood flow fluctuations in resting state

    Get PDF
    In this paper the cerebral blood flow (CBF) in resting state obtained from SPECT imaging is employed as a hemodynamics descriptor to study the concurrent changes between brain structures and to build binarized connectivity graphs. The statistical similarity in CBF between pairs of regions was measured by computing the Pearson correlation coefficient across 31 normal subjects. We demonstrated the CBF connectivity matrices follow 'small-world' attributes similar to previous studies using different modalities of neuroimaging data (MRI, fMRI, EEG, MEG). The highest concurrent fluctuations in CBF were detected between homologous cortical regions (homologous callosal connections). It was found that the existence of structural core regions or hubs positioned on a high proportion of shortest paths within the CBF network. These were anatomically distributed in frontal, limbic, occipital and parietal regions that suggest its important role in functional integration. Our findings point to a new possibility of using CBF variable to investigate the brain networks based on graph theory in normal and pathological states. Likewise, it opens a window to future studies to link covariation between morphometric descriptors, axonal connectivity and CBF processes with a potential diagnosis applications

    Spherical deconvolution of multichannel diffusion MRI data with non-Gaussian noise models and spatial regularization

    Get PDF
    Spherical deconvolution (SD) methods are widely used to estimate the intra-voxel white-matter fiber orientations from diffusion MRI data. However, while some of these methods assume a zero-mean Gaussian distribution for the underlying noise, its real distribution is known to be non-Gaussian and to depend on the methodology used to combine multichannel signals. Indeed, the two prevailing methods for multichannel signal combination lead to Rician and noncentral Chi noise distributions. Here we develop a Robust and Unbiased Model-BAsed Spherical Deconvolution (RUMBA-SD) technique, intended to deal with realistic MRI noise, based on a Richardson-Lucy (RL) algorithm adapted to Rician and noncentral Chi likelihood models. To quantify the benefits of using proper noise models, RUMBA-SD was compared with dRL-SD, a well-established method based on the RL algorithm for Gaussian noise. Another aim of the study was to quantify the impact of including a total variation (TV) spatial regularization term in the estimation framework. To do this, we developed TV spatially-regularized versions of both RUMBA-SD and dRL-SD algorithms. The evaluation was performed by comparing various quality metrics on 132 three-dimensional synthetic phantoms involving different inter-fiber angles and volume fractions, which were contaminated with noise mimicking patterns generated by data processing in multichannel scanners. The results demonstrate that the inclusion of proper likelihood models leads to an increased ability to resolve fiber crossings with smaller inter-fiber angles and to better detect non-dominant fibers. The inclusion of TV regularization dramatically improved the resolution power of both techniques. The above findings were also verified in brain data

    Automated Discrimination of Brain Pathological State Attending to Complex Structural Brain Network Properties: The Shiverer Mutant Mouse Case

    Get PDF
    Neuroimaging classification procedures between normal and pathological subjects are sparse and highly dependent of an expert's clinical criterion. Here, we aimed to investigate whether possible brain structural network differences in the shiverer mouse mutant, a relevant animal model of myelin related diseases, can reflect intrinsic individual brain properties that allow the automatic discrimination between the shiverer and normal subjects. Common structural networks properties between shiverer (C3Fe.SWV Mbpshi/Mbpshi, n = 6) and background control (C3HeB.FeJ, n = 6) mice are estimated and compared by means of three diffusion weighted MRI (DW-MRI) fiber tractography algorithms and a graph framework. Firstly, we found that brain networks of control group are significantly more clustered, modularized, efficient and optimized than those of the shiverer group, which presented significantly increased characteristic path length. These results are in line with previous structural/functional complex brain networks analysis that have revealed topologic differences and brain network randomization associated to specific states of human brain pathology. In addition, by means of network measures spatial representations and discrimination analysis, we show that it is possible to classify with high accuracy to which group each subject belongs, providing also a probability value of being a normal or shiverer subject as an individual anatomical classifier. The obtained correct predictions (e.g., around 91.6–100%) and clear spatial subdivisions between control and shiverer mice, suggest that there might exist specific network subspaces corresponding to specific brain disorders, supporting also the point of view that complex brain network analyses constitutes promising tools in the future creation of interpretable imaging biomarkers

    Brain hemispheric structural efficiency and interconnectivity rightward asymmetry in human and nonhuman primates

    No full text
    Evidences of inter-regional structural asymmetries have been previously reported for brain anatomic regions supporting well described functional lateralization. Here we aimed to investigate whether the two brain hemispheres demonstrate dissimilar general structural attributes implying different principles on information flow management. Common left/right hemisphere structural network properties are estimated and compared for right-handed healthy human subjects and a non-human primate, by means of three different probabilistic diffusionweighted MRI fiber tractography algorithms and a graph theory framework. In both the human and non-human primate the data support the conclusion that the right hemisphere is significantly more efficient and interconnected than the left hemisphere, whereas the left hemisphere presents more indispensable regions for the whole brain structural network than the right hemisphere. In terms of functional principles, this pattern could be related with the fact that the left hemisphere has a leading role for highly demanding specific process, such as language, which may require dedicated specialized networks, whereas the right hemisphere has a leading role for more general process, such as integration tasks, which may require a more general level of interconnection

    Estimating brain functional connectivity with sparse multivariate autoregression

    No full text
    There is much current interest in identifying the anatomical and functional circuits that are the basis of the brain's computations, with hope that functional neuroimaging techniques will allow the in vivo study of these neural processes through the statistical analysis of the time-series they produce. Ideally, the use of techniques such as multivariate autoregressive (MAR) modelling should allow the identification of effective connectivity by combining graphical modelling methods with the concept of Granger causality. Unfortunately, current time-series methods perform well only for the case that the length of the time-series Nt is much larger than p, the number of brain sites studied, which is exactly the reverse of the situation in neuroimaging for which relatively short time-series are measured over thousands of voxels. Methods are introduced for dealing with this situation by using sparse MAR models. These can be estimated in a two-stage process involving (i) penalized regression and (ii) pruning of unlikely connections by means of the local false discovery rate developed by Efron. Extensive simulations were performed with idealized cortical networks having small world topologies and stable dynamics. These show that the detection efficiency of connections of the proposed procedure is quite high. Application of the method to real data was illustrated by the identification of neural circuitry related to emotional processing as measured by BOLD
    corecore